DeepCool FT12: Evolution in 120mm format

Measuring the intensity (and power draw) of lighting

This is a first – a fan with the leading edges of the impeller blades on the opposite side to normal ones. This is primarily done for a better view of “fans without stator struts” in cases with glass side panels. In addition, such an unconventional design also has quite clear and measurable advantages and disadvantages, also in terms of functional characteristics. Let’s take everything in turn.

Measuring the intensity (and power draw) of lighting

Modern fans often include lighting. This is no longer a “cooling” parameter, but for some users the presence of (A)RGB LEDs is important. Therefore, we also measure how intense this lighting is in our tests. These tests are the only ones that take place externally, outside the wind tunnel.

We record the luminosity of the fans in a chamber with reflective walls. This internal arrangement is important to increase the resolution for us to measure anything at all with lower luminosity fans. But also so that the readings do not blend together and it is obvious which fan is emitting more light and which one less.

Fan in the light chamber to measure the intensity of (A)RGB LEDs

The illumination intensity is measured in the horizontal position of the fan, above which is the lux meter sensor (UNI-T UT383S). This is centered on the illumination intensity sensing chamber.

The illumination is controlled via an IR controller and the hue is set to RGB level 255, 255, 255 (white). We record the brightness at maximum and minimum intensity. According to this, you can easily see if the brightness is high enough, but conversely also if the lower level is low enough for you.

In addition to the brightness intensity, we also measure the power draw that it requires. This is again through the shunt, which is between the Gophert CPS-3205 power supply and the (A)RGB LED driver. After this we get a reading of the lighting power draw. In the graphs we show it separately, but also in sum with the motor power draw as the total maximum fan power.


  •  
  •  
  •  
Flattr this!

Comments (2) Add comment

  1. The results seem to indicate that this fan is optimized for RPM-normalized performance instead of noise-normalized performance, and little attention being paid to its behaviour on obstacles. Surprisingly disappointing to me especially vs. the excellent FT14.

    1. In addition to facing significantly less competition, the FT14 has a narrower blade inclination. It’s significantly larger on the FT12 and although the frontal profile of the fan looks great, even for use on obstacles, it does have some weaknesses. Similar in nature to Arctic’s F fans, for example, although in the case of the FT12 they don’t manifest themselves as noticeably. With fans, an overall aerodynamic design is significantly more efficient for all scenarios. 🙂

Leave a Reply

Your email address will not be published. Required fields are marked *